Preparing the periphery for a subsequent behavior: motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia.
نویسندگان
چکیده
Some behaviors occur in obligatory sequence, such as reaching before grasping an object. Can the earlier behavior serve to prepare the musculature for the later behavior? If it does, what is the underlying neural mechanism of the preparation? To address this question, we examined two feeding behaviors in the marine mollusk Aplysia californica, one of which must precede the second: biting and swallowing. Biting is an attempt to grasp food. When that attempt is successful, the animal immediately switches to swallowing to ingest food. The main muscle responsible for pulling food into the buccal cavity during swallowing is the I3 muscle, whose motor neurons B6, B9, and B3 have been previously identified. By performing recordings from these neurons in vivo in intact, behaving animals or in vitro in a suspended buccal mass preparation, we demonstrated that the frequencies and durations of these motor neurons increased from biting to swallowing. Using the physiological patterns of activation to drive these neurons intracellularly, we further demonstrated that activating them using biting-like frequencies and durations, either alone or in combination, generated little or no force in the I3 muscle. When biting-like patterns preceded swallowing-like patterns, however, the forces during the subsequent swallowing-like patterns were significantly enhanced. Sequences of swallowing-like patterns, either with these neurons alone or in combination, further enhanced forces in the I3 muscle. These results suggest a novel mechanism for enhancing force production in a muscle, and may be relevant to understanding motor control in vertebrates.
منابع مشابه
The kinematics of multifunctionality: comparisons of biting and swallowing in Aplysia californica.
What are the mechanisms of multifunctionality, i.e. the use of the same peripheral structures for multiple behaviors? We studied this question using the multifunctional feeding apparatus of the marine mollusk Aplysia californica, in which the same muscles mediate biting (an attempt to grasp food) and swallowing (ingestion of food). Biting and swallowing responses were compared using magnetic re...
متن کاملMotor neuronal activity varies least among individuals when it matters most for behavior.
How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor component...
متن کاملDifferential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.
To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a...
متن کاملNeuromechanics of coordination during swallowing in Aplysia californica.
Bernstein (1967) hypothesized that preparation of the periphery was crucial for correct responses to motor output. To test this hypothesis in a behaving animal, we examined the roles of two identified motor neurons, B7 and B8, which contribute to feeding behavior in the marine mollusk Aplysia californica. Neuron B7 innervates a hinge muscle and has no overt behavioral effect during smaller-ampl...
متن کاملNeuromodulation Changes the Biomechanics and Capabilities of the Aplysia Feeding
INTRODUCTION Neuromodulation is often used by the nervous system to change a muscle’s response to nervous system stimulation. Invertebrate preparations are well suited for study of neuromodulation because of their experimentally tractable nervous systems and biomechanics. The Aplysia smooth muscle I2 is a good model for neuromodulation because it is a muscle with known behavioral correlates [1]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 12 شماره
صفحات -
تاریخ انتشار 2015